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Abstract: For radiomics to be accepted as a definite tool in medicine, the outputs must be robust, repeatable and reliable. 

Image processing alters the quality of the input data which might have an impact on the values of the extracted features and 

ultimately the signatures developed. This study evaluated the magnitude of the influence of various interpolation and post-

acquisition processing methods on the radiomic feature values extracted from planar images and radiomic signatures. Three 

different interpolation methods were applied to a chest x-ray dataset before 2-dimesional (2D) radiomic features were extracted 

using Pyradiomics. The influence of image size, cropping and re-segmentation were also evaluated by changing the respective 

variable before applying bilinear interpolation and extracting 2D features. ANOVA and post-hoc Bonferroni corrections were 

used to assess the differences in the radiomic feature values. Of the 93 first order- and texture- features extracted, 42 texture 

features (56.8%) proved to be significantly influenced (p ≤ 0.05) by the interpolation method. Only 2 first order features 

(10.5%) were significantly influenced (p ≤ 0.05) by the image size and 62 texture features (83.8%) by the other pre-processing 

methods evaluated. Pearson’s Correlation Analysis was then applied to develop a separate radiomics signature from each of the 

six image processing datasets under consideration. Five identical signatures were developed, with only the uncropped dataset 

that resulted in a unique signature. This study showed that the interpolation algorithms and other processing applied to planar 

images do have a noticeable influence on most radiomic feature values extracted. But regardless of the differences seen in the 

feature values, the radiomic signatures were reproducible for most datasets using different image processing methods. 

Keywords: Radiomics, Image Processing, Interpolation, Chest X-rays, Radiomic Signatures 

 

1. Introduction 

Radiomics is a field of study that has the potential to 

extract large amounts of quantitative features from medical 

images [1]. It makes use of statistically based imaging 

analysis algorithms to identify image features which can be 

used to quantify disease characteristics [2]. Radiomic feature 

extraction has the hypothesis that the correct combination of 

these algorithms, together with the clinical data, can express 

meaningful tissue properties useful in the management of a 

disease [3]. Numerous articles have been published on the 

use of radiomics in tumours [4-7], and a few on the 

application in non-neoplastic diseases such as pulmonary 

tuberculosis and Covid-19 [8-10]. In recent years this data 

mining tool advanced to the point where it incorporates 

machine learning and deep learning approaches to build state 

of the art radiomic signatures and models [11]. However, 

radiomic studies can only be used as a definite tool in 

medicine once the outcomes are reliable, repeatable, robust 

and validated. 

The complex multi-step process of radiomics includes; 

Image acquisition, image post-acquisition processing, image 

segmentation, feature extraction, dimensionality reduction, 

association analysis, model construction and database 
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development [2]. 

The foundation of this multi-step process however remains 

the input image, either two- (2D) or three dimensional (3D). 

But with the fast development of quantitative imaging 

methods the focus on this foundational step has been lost. It 

was shown that the quality of the input data has a 

considerable impact on the value of the extracted features [3]. 

And that variables such as a variety of acquisition, 

reconstruction and post processing parameters influence the 

image texture and noise and consequently the value of the 

extracted features [3]. The robustness of radiomic features 

therefor depend significantly on the image post-processing 

applied [12]. The Imaging Biomarker Standardization 

Initiative (IBSI) was published in 2019 with the aim to 

standardize image biomarker nomenclature and definitions, 

to suggest tools for verifying radiomics software 

implementations and to standardize reporting guidelines [13]. 

The IBSI gives useful suggestions on the radiomics workflow 

with detailed technical instructions regarding the image post-

acquisition processing workflow required [13]. It 

recommends that the following steps should be followed 

before feature extraction algorithms are applied; dataset 

classification, data conversion, post-acquisition processing, 

segmentation, interpolation and re-segmentation [13]. 

Data classification refers to sorting the images in the 

dataset to only include images of the same modality, patient 

orientation and photometric interpretation. Data conversion 

of raw image data into more meaningful data is only required 

for certain image modalities without definite grayscale values, 

e.g. PET [11]. To homogenize datasets further various post-

acquisition processing steps are required; image format 

conversion, normalization and discretization of the grayscale 

intensities and image interpolation [13]. 

Interpolation algorithms translate image intensities from 

the original image grid to an interpolation grid. Pixels are 

spatially represented by their centres in such grids [11, 13]. 

Isotropic pixel spacing is required for texture features to be 

rotationally invariant, and to allow comparison between 

different datasets [13]. There are currently no clear 

recommendations on whether up-sampling or down-sampling 

should be the preferred interpolation method for radiomic 

studies [12]. Only a recommendation that a calculated 

decision should be made regarding this, as up-sampling to the 

smallest pixel dimension can introduce artificial information, 

while down-sampling to the largest pixel dimension can 

result in information loss [13]. 

Various interpolation algorithms are commonly used for 

volumetric image pre-processing in medicine, e.g. nearest 

neighbour, trilinear, tricubic convolution and tricubic spline 

interpolation [13]. The 2D equivalents of these popular 

interpolation methods are 2D-nearest neighbour-, bilinear- 

and bicubic interpolation, but no literature could be found on 

the optimal choice for interpolation of planar medical images. 

Nearest neighbour interpolation adapts the intensity of the 

nearest neighbouring pixel without regard to the intensities of 

other neighbouring pixels [14]. This is the simplest 

interpolation method, but may result in blocky images. 

Bilinear interpolation takes the intensity of 4 neighbouring 

pixels into account and applies two linear interpolations to 

obtain a new pixel intensity [14]. Bicubic interpolation 

results in the smoothest interpolation as it uses 16 pixels and 

applies a third order polynomial function to interpolate the 

new pixel intensity [14]. 

In the recommended workflow discussed above only 3D 

images were mentioned, which leaves the question as to 

whether the same labour intensive steps are required for 

planar images. Also no literature could be found that 

quantitatively shows the influence that each of these post-

acquisition processing steps have on the feature values 

extracted or on the radiomic signatures being developed. 

This study was performed with the aim to evaluate the 

scale of influence that different interpolation methods and 

other common post-acquisition processing applied to planar 

images will have on the extracted radiomic features. It also 

evaluated which radiomic features are most sensitive to these 

post-acquisition processing methods and how these feature 

values influence radiomics signatures. A chest x-ray (CXR) 

dataset was selected for this study since these planar images 

are still clinically used in many countries for diagnosis and 

disease management [15]. 

2. Methods 

2.1. Dataset 

This is a retrospective study consisting of 103 

posteroanterior (PA) CXR of patients diagnosed with active 

pulmonary tuberculosis. Ethical clearance was granted by the 

researchers’ tertiary institution to use these images for this 

study. 

2.2. Image Pre-Processing 

The original dataset consisted of DICOM images of 

various sizes and width-to-height ratios. To remove as many 

variables as possible that might have an underlying influence 

on the interpolation, all images were cropped to a square 

(equal width-to-heigh ratio). Only one dimension of the 

images was cropped to preserve the maximum dimensions of 

the CXR. Unfortunately automatic batch cropping was 

unsuccessful as most CXR were acquired at asymmetrical 

patient positions and automatic cropping of these images 

removed lung pixels. An expensive added layer of manual 

cropping of all images was therefore performed using 

commercial image processing software, Total Image 

Converter (by CoolUtils.com file converters) version 

8.2.0.237. To eliminate the dual processing required in 

DICOM images, where the corresponding header group 

element must be changed with the image data, images were 

converted to another format. The same software was used to 

convert all images to PNG format and to correct the 

unconventional photometric interpretation of Monochrome 1. 

During the conversion from DICOM to PNG-format, the bit 

depth was changed from 14 or 12 bits to 8 bits to obtain a 

uniform dataset and the scalar DICOM type was converted to 
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conventional RGB type for PNG formatted images. Image 

size, pixel size and image resolution were preserved. Since 

the radiomics library used can only apply the feature 

algorithms to scalar images, the images were finally 

converted to L-mode with the ITU-R 601-2 luma transform. 

2.3. Image Interpolation 

All images in the original DICOM dataset had dimensions 

equal to or larger than 1024x1024 pixels after being cropped. 

These large images ensured that no image had to be 

extrapolated. All cropped images were therefore down 

sampled to 1024x1024 pixels using 3 basic interpolation 

algorithms commonly used in image processing; bilinear 

interpolation, bicubic interpolation and 2D nearest neighbour 

interpolation. This was done using the cv2.resize() function 

(cv2.INTER_LINEAR, cv2.INTER_CUBIC and 

cv2.INTER_NEAREST) in Python version 3.7.6. 

2.4. Segmentation and Feature Extraction 

A fully automatic in-house U-net based segmentation 

model was used to segment the lung region-of-interest (ROI) 

[16]. The segmentation model resizes images to 256x256 

pixels (using bilinear interpolation) before segmenting the 

lungs as a 256x256 pixel mask. All masks therefore had to be 

extrapolated to 1024x1024 pixels to have similar dimensions 

to its corresponding image. Extrapolation of the masks were 

done using nearest neighbour interpolation. The extrapolation 

method will have no influence on the segmentation, or the 

results of this study, as a mask is simply a binary matrix. 

Each image therefore had 3 versions (one version for each 

interpolation method) associated to a single mask. 

The Pyradiomics library has 103 2D features available for 

extraction (10 2D shape features, 19 first order- and 74 

texture features). Pyradiomics (version 3.0) in Python 

(version 3.7.6) was used to extract a total of 93 2D features 

(first order- and texture features only) from each image 

version. No shape-based features were evaluated as these are 

calculated using the shape of the ROI defined by the mask. 

Since the same mask is used for all 3 image versions this will 

naturally result in identical features. Pyradiomics have five 

different texture feature groups namely; GLCM = Gray Level 

Co-occurrence Matrix, GLDM = Gray Level Dependence 

Matrix, GLRLM = Gray Level Run Length Matrix, GLSZM 

= Gray Level Size Zone Matrix and NGTDM = 

Neighbouring Gray Tone Difference Matrix [1]. All variables 

in the Pyradiomics library were left at default and no filters 

were applied. 

2.5. Evaluating the Influence of Image Size, Cropping and 

Re-segmentation 

The influence of 3 other common post-acquisition image 

processing techniques was also evaluated. To do this the 

bilinearly interpolated dataset that was discussed in the above 

methodology (section 2.3), was used as baseline. Mask 

segmentation and feature extraction was then repeated three 

times while only 1 post-acquisition processing variable was 

changed at a time to obtain a second, third and fourth feature 

set for comparison. 

Firstly, the influence of image dimension was studied by 

interpolating the baseline dataset to 256x256 pixels instead of 

1024x1024 pixels with bilinear interpolation. This dataset 

was again segmented and radiomic features extracted to 

obtain the second set of features called Size. Secondly, the 

influence of image cropping before applying the 

segmentation model and radiomic algorithms was evaluated. 

This dataset was left uncropped before all other image pre-

processing steps were performed. The masks were segmented 

and radiomic features extracted to obtain the third set of 

features called Uncropped. Lastly, the influence of re-

segmenting the images after image interpolation was 

evaluated. The fourth set of features called Re-segmented 

was therefore obtained by using masks that were re-

segmented after image interpolation. 

2.6. Statistical Analysis 

Statistical analysis for both image processing sections of 

this study was performed using SPSS 28.0. ANOVA and 

post-hoc Bonferroni corrections were used to assess the 

differences between features obtained for the different 

variables using the different image post-processing 

methodologies under study. 

2.7. Dimensionality Reduction 

A Shapiro-Wilk test was used to ensure no normality 

assumption violations in the features. This dataset does not 

fully adhere to the assumption of normality, but since this 

sample size is sufficiently large (larger than 100), Pearson 

Correlations can still be applied as it is robust against such 

violations [17]. Pearson Correlation Analysis was therefore 

applied to obtain a radiomics signature for each of the six 

above-mentioned datasets. Feature pairs with absolute 

correlations greater than 0.8 were removed. 

3. Results 

3.1. Section 1: Influence of the Interpolation Algorithm 

When comparing bilinear, bicubic and nearest neighbour 

interpolation, significant results (F-test) between these three 

methodologies were found for 42 of the 93 features extracted. 

The features with significant p-values (p ≤ 0.05) are 

summarized in table 1. To evaluate which interpolation 

method contributed to the significantly lower or higher 

feature values, individual group comparisons were performed 

by comparing the mean values of each feature to the feature 

group mean. The results are also summarized in table 1 as 

either < or > to indicate a significantly lower mean (<) or a 

significantly higher mean (>) respectively. 
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Table 1. Summary of features that displayed significant differences (p ≤ 0.05) when comparing the different interpolation methods with their respective 

individual group comparison results. 

Feature no Feature name Significant (F-test) Bilinear Bicubic Nearest Neighbour 

23 glcm_Contrast 0.0001 < > > 

24 glcm_Correlation 0.0001 >   

25 glcm_DifferenceAverage 0.0001 <  > 

26 glcm_DifferenceEntropy 0.0001 <  > 

27 glcm_DifferenceVariance 0.0001 < > > 

28 glcm_Id 0.0001 >  < 

29 glcm_Idm 0.0001 >  < 

30 glcm_Idmn 0.0001 >   

31 glcm_Idn 0.0001 >   

32 glcm_Imc1 0.0001 <  > 

33 glcm_Imc2 0.0001 >   

34 glcm_InverseVariance 0.0001 < > > 

37 glcm_JointEntropy 0.0320 <  > 

38 glcm_MCC 0.0001 >   

43 gldm_DependenceEntropy 0.0290 <  > 

44 gldm_DependenceNonUniformity 0.0050 > < < 

45 gldm_DependenceNonUniformityNormalized 0.0080 >  < 

46 gldm_DependenceVariance 0.0001 < > > 

50 gldm_LargeDependenceEmphasis 0.0001 >  < 

51 gldm_LargeDependenceHighGrayLevelEmphasis 0.0130 > < < 

54 gldm_SmallDependenceEmphasis 0.0001 <  > 

55 gldm_SmallDependenceHighGrayLevelEmphasis 0.0001 <  > 

56 gldm_SmallDependenceLowGrayLevelEmphasis 0.0010 <   

57 glrlm_GrayLevelNonUniformity 0.0001 < > > 

65 glrlm_RunEntropy 0.0001 >   

66 glrlm_RunLengthNonUniformity 0.0001 <  > 

67 glrlm_RunLengthNonUniformityNormalized 0.0001 <   

68 glrlm_RunPercentage 0.0001 < > > 

70 glrlm_ShortRunEmphasis 0.0001 < > > 

71 glrlm_ShortRunHighGrayLevelEmphasis 0.0020 < > > 

73 glszm_GrayLevelNonUniformity 0.0001 <  > 

78 glszm_LargeAreaHighGrayLevelEmphasis 0.0290 >  < 

81 glszm_SizeZoneNonUniformity 0.0001 < > > 

82 glszm_SizeZoneNonUniformityNormalized 0.0001 < >  

83 glszm_SmallAreaEmphasis 0.0001 < >  

84 glszm_SmallAreaHighGrayLevelEmphasis 0.0500 <   

86 glszm_ZoneEntropy 0.0001 >   

87 glszm_ZonePercentage 0.0001 <  > 

89 ngtdm_Busyness 0.0001 <  > 

91 ngtdm_Complexity 0.0001 < > > 

92 ngtdm_Contrast 0.0001 < > > 

93 ngtdm_Strength 0.0001 >  < 

 

The significant differences can be appreciated by 

observing figure 1 where the normalized means of the 93 

features extracted using the different interpolation methods 

were plotted. Before plotting the graphs, the means were 

normalized with min-max normalization to compensate for 

the scale variety of the radiomic features. 

 

Figure 1. Plot of the normalized means of the 93 features extracted using three different interpolation methods (Bilinear, Bicubic and Nearest Neighbour 

interpolation) to indicate the significant differences obtained in some of the radiomic features. 
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3.2. Section 2: Influence of Image Size, Image Cropping 

and Re-segmentation 

When comparing the baseline, Size, Uncropped and Re-

segmented datasets, significant differences (F-test) were 

found for 63 of the 93 features extracted. The features with 

significant p-values (p ≤ 0.05) are summarized in table 2. 

Individual group comparisons were performed to evaluate 

which pre-processing methods contributed to the 

significantly lower or higher feature values by comparing the 

means of each feature to the feature group mean. The results 

are also indicated in table 2 as either < or > to indicate a 

significantly lower mean (<) or a significantly higher mean 

(>) respectively. 

Table 2. Summary of features that displayed significant differences (p ≤ 0.05) when comparing the various pre-processing methods with their respective 

individual group comparison results. 

Feature no Feature name Significant (F-test) Baseline Size Uncropped Re-segmented 

3 firstorder_Energy 0.0001  <   

16 firstorder_TotalEnergy 0.0001  <   

19 glcm_Autocorrelation 0.0250  <   

23 glcm_Contrast 0.0001  >   

24 glcm_Correlation 0.0001  >   

25 glcm_DifferenceAverage 0.0001  >   

26 glcm_DifferenceEntropy 0.0001  >   

27 glcm_DifferenceVariance 0.0001  >   

28 glcm_Id 0.0001  <   

29 glcm_Idm 0.0001  <   

30 glcm_Idmn 0.0001  <   

31 glcm_Idn 0.0001  <   

32 glcm_Imc1 0.0001  >   

33 glcm_Imc2 0.0001  <   

34 glcm_InverseVariance 0.0001  >   

35 glcm_JointAverage 0.0390  <   

36 glcm_JointEnergy 0.0001  <   

37 glcm_JointEntropy 0.0001  >   

38 glcm_MCC 0.0001  <   

39 glcm_MaximumProbability 0.0001  <   

40 glcm_SumAverage 0.0390  <   

41 glcm_SumEntropy 0.0050  >   

43 gldm_DependenceEntropy 0.0001  >   

44 gldm_DependenceNonUniformity 0.0001  < <  

45 gldm_DependenceNonUniformityNormalized 0.0001  <   

46 gldm_DependenceVariance 0.0001  >   

47 gldm_GrayLevelNonUniformity 0.0001  <   

50 gldm_LargeDependenceEmphasis 0.0001  <   

51 gldm_LargeDependenceHighGrayLevelEmphasis 0.0001  <   

54 gldm_SmallDependenceEmphasis 0.0001  >   

55 gldm_SmallDependenceHighGrayLevelEmphasis 0.0001  >   

56 gldm_SmallDependenceLowGrayLevelEmphasis 0.0001  >   

57 glrlm_GrayLevelNonUniformity 0.0001  <   

60 glrlm_HighGrayLevelRunEmphasis 0.0310  <   

61 glrlm_LongRunEmphasis 0.0001  < <  

62 glrlm_LongRunHighGrayLevelEmphasis 0.0001  <   

63 glrlm_LongRunLowGrayLevelEmphasis 0.0030  <   

65 glrlm_RunEntropy 0.0001  <   

66 glrlm_RunLengthNonUniformity 0.0001  <   

67 glrlm_RunLengthNonUniformityNormalized 0.0001  >   

68 glrlm_RunPercentage 0.0001  <   

69 glrlm_RunVariance 0.0010  <   

70 glrlm_ShortRunEmphasis 0.0001  <   

71 glrlm_ShortRunHighGrayLevelEmphasis 0.0001  >   

72 glrlm_ShortRunLowGrayLevelEmphasis 0.0001  >   

73 glszm_GrayLevelNonUniformity 0.0001  <   

74 glszm_GrayLevelNonUniformityNormalized 0.0010  <   

75 glszm_GrayLevelVariance 0.0001  >   

77 glszm_LargeAreaEmphasis 0.0001  < <  

78 glszm_LargeAreaHighGrayLevelEmphasis 0.0001  > <  

79 glszm_LargeAreaLowGrayLevelEmphasis 0.0001  < <  

80 glszm_LowGrayLevelZoneEmphasis 0.0410  >   

81 glszm_SizeZoneNonUniformity 0.0001  <   
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Feature no Feature name Significant (F-test) Baseline Size Uncropped Re-segmented 

82 glszm_SizeZoneNonUniformityNormalized 0.0001  <   

83 glszm_SmallAreaEmphasis 0.0001  <   

86 glszm_ZoneEntropy 0.0170  >   

87 glszm_ZonePercentage 0.0001  >   

88 glszm_ZoneVariance 0.0001  < <  

89 ngtdm_Busyness 0.0001  <   

90 ngtdm_Coarseness 0.0001  >   

91 ngtdm_Complexity 0.0001  >   

92 ngtdm_Contrast 0.0001  >   

93 ngtdm_Strength 0.0001  >   

 

The individual group comparisons are graphically 

presented in figures 2, 3 and 4. The normalized mean values 

of the baseline feature set were plotted against the Size 

features (Figure 2), Uncropped features (Figure 3) and the 

Re-segmented features (Figure 4) respectively. 

 

Figure 2. Plot of the normalized means of the 93 features extracted using different image sizes (1024x1024 pixels and 256x256 pixels) to indicate the 

significant differences obtained in some of the radiomic features. 

 

Figure 3. Plot of the normalized means of the 93 features extracted using cropped and uncropped images to indicate the significant differences obtained in 

some of the radiomic features. 

 

Figure 4. Plot of the normalized means of the 93 features extracted using images segmented prior to interpolation and re-segmented images to indicate that 

no significant differences are seen in the extracted radiomic features. 
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3.3. Section 3: Influence on Radiomic Signatures 

Six datasets were under consideration in this study, three 

evaluating the influence of the interpolation algorithm 

(Bilinear, Bicubic and Nearest Neighbour) and three 

evaluating the influence of other image post processing 

methods (Size, Uncropped and Re-segmented). Table 3 

summarizes the signatures obtained for each of these datasets. 

Table 3. Summary of the signature features retained for each of the six 

datasets under consideration. 

DATASET 
# features 

removed 
Signature features retained 

BI-LINEAR 90 

glcm_Idmn, 

ngtdm_Busyness, 

ngtdm_Strength 

BI-CUBIC 90 

glcm_Idmn, 

ngtdm_Busyness, 

ngtdm_Strength 

NEAREST 

NEIGHBOUR 
90 

glcm_Idmn, 

ngtdm_Busyness, 

ngtdm_Strength 

SIZE 90 

glcm_Idmn, 

ngtdm_Busyness, 

ngtdm_Strength 

UNCROPPED 89 

glcm_Idmn, 

gldm_GrayLevelNonUniformity, 

ngtdm_Busyness, 

ngtdm_Strength 

RE-SEGMENTED 90 

glcm_Idmn, 

ngtdm_Busyness, 

ngtdm_Strength 

4. Discussions 

In radiomics first order statistics uses basic statistical 

algorithms to describe the value and distribution of a group 

of pixels without concern for spatial relationships [3]. Second 

order statistics describe the textural features and are 

calculated by the statistical inter-relationship between the 

pixels in the ROI [1]. This was confirmed by the results of 

this study where 42 (56.8%) and 62 (83.8%) out of the 74 

texture features extracted were significantly influenced by 

the interpolation method and other post-acquisition image 

processing respectively. The only 2 first order feature values 

influenced by any image processing were Energy (p=0.001) 

and Total Energy (p=0.001). 

4.1. Section 1: Interpolation 

Since no ground truth exists regarding the correct 

interpolation algorithm to apply in radiomic studies, the group 

mean for each feature was considered as the baseline for 

individual comparisons. When individual group comparisons 

were performed, no significant differences were seen in any 

first order feature values. However significant differences in 

56.8% of the texture features amongst all three interpolation 

methods were observed. The differences were random without 

an obvious trend or pattern that can be identified. The mean 

feature values for bicubic interpolation, which is the smoothest 

interpolation, do however have outputs closest to the group 

mean with only 15 features that differ considerably from the 

group mean. Another observation is that bilinear- and nearest 

neighbour interpolation were always distributed to opposite 

sides of the group mean in the 42 features that differed 

significantly. Bicubic interpolation will most likely result in 

the most stable feature choice. However when selecting an 

interpolation algorithm all factors, such as the quality of the 

images, available computational power and study outcomes, 

should be considered. By definition bilinear interpolation is 

considered as the conservative choice in image interpolation as 

it takes the intensity of 4 neighbouring pixels into account, 

compared to 16 in bicubic interpolation and only 1 in nearest 

neighbour interpolation [13]. Without a ground truth, the 

above results highlight the importance of consistency in 

radiomics studies. Regardless of the method selected only a 

single interpolation algorithm must be applied across an entire 

study and in comparative studies. 

4.2. Section 2: Size, Cropping and Re-segmentation 

In this part of the study all four feature datasets (Baseline, 

Size, Uncropped and Re-segmented) were interpolated with 

bilinear interpolation. When the Size CXR dataset was down 

sampled to a quarter (256x256 pixels) of the baseline images’ 

dimensions, 83.8% of the texture feature values extracted were 

significantly influenced. This can be accounted for by the 

statistical inter-relationship of the pixels in the secondary 

matrixes that would have changed by down sampling the 

images. Some 3D radiomic studies also mentioned the 

influence of image size on the outcome of their studies [18, 19]. 

Only 6 out of 74 (8.1%) texture features extracted were 

significantly influenced by not cropping the images into a 

square before applying the interpolation algorithm. This can 

also be accounted for by the image matrix that would have 

changed when the interpolation algorithm had unevenly 

down sampled the pixels of the uncropped images in the two 

dimensions. It is possible that the influence of uncropped 

images will increase as the width-to-height ratios of the 

uncropped images increase. 

By re-segmenting the masks after image interpolation were 

applied, no significant influences were observed in any 

features. This might hold true for this study only as the 

segmentation model used also applied bilinear interpolation to 

the images before segmenting the masks. In essence the masks 

were always re-segmented without doing it intentionally. Even 

being study specific, these results are valuable as it proves 

good repeatability of the interpolation algorithm, the 

segmentation model and the radiomics library used. 

4.3. Section 3: Radiomic Signatures 

Five out of the six radiomic signatures that were constructed 

from each dataset were identical consisting of 3 texture 

features; glcm_Idmn, ngtdm_Busyness and ngtdm_Strength. 

Only the Uncropped dataset signature had an additional feature, 

gldm_GrayLevelNonUniformity. This reproducible result is 
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seen regardless of the significant differences found in the 

extracted feature values caused by the different interpolation 

methods, sizes and re-segmentations applied. Also the unique 

signature obtained when the images were left uncropped 

indicates that the labour intensive process of cropping images 

to squares (or equal width-to-height ratios for the entire dataset) 

is imperative. 

5. Conclusions 

This study showed that first order feature values are not 

significantly impacted by the interpolation algorithms and 

other image processing methods applied, but that it does 

significantly influence most texture feature values extracted 

from planar images. It also showed that regardless of the 

significant differences seen in the extracted feature values, 

caused by most post-acquisition image processing methods, 

the outcome of the radiomics signatures remains reproducible. 

The only image post-acquisition processing step that resulted 

in a different signature was image cropping and it must 

therefore strongly be considered in all planar image studies. 

Larger sample sizes are required to verify this study, but it 

preliminarily shows that image post-processing, except 

cropping, does not considerably influence the outcome of 

radiomic signatures. Focus should rather be placed on 

applying the correct dimensionality algorithms that are robust 

against any instabilities caused by image post-processing. It 

is however imperative to be consistent with all image 

processing steps applied across an entire radiomics study. 

Thorough reporting of all image processing applied in 

radiomic studies is also crucial to increase the reproducibility 

and validity of this field of study. 
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